Metamath Proof Explorer


Theorem lgslem1

Description: When a is coprime to the prime p , a ^ ( ( p - 1 ) / 2 ) is equivalent mod p to 1 or -u 1 , and so adding 1 makes it equivalent to 0 or 2 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgslem1 AP2¬PAAP12+1modP02

Proof

Step Hyp Ref Expression
1 eldifi P2P
2 1 3ad2ant2 AP2¬PAP
3 prmnn PP
4 2 3 syl AP2¬PAP
5 simp1 AP2¬PAA
6 prmz PP
7 2 6 syl AP2¬PAP
8 5 7 gcdcomd AP2¬PAAgcdP=PgcdA
9 simp3 AP2¬PA¬PA
10 coprm PA¬PAPgcdA=1
11 2 5 10 syl2anc AP2¬PA¬PAPgcdA=1
12 9 11 mpbid AP2¬PAPgcdA=1
13 8 12 eqtrd AP2¬PAAgcdP=1
14 eulerth PAAgcdP=1AϕPmodP=1modP
15 4 5 13 14 syl3anc AP2¬PAAϕPmodP=1modP
16 phiprm PϕP=P1
17 2 16 syl AP2¬PAϕP=P1
18 nnm1nn0 PP10
19 4 18 syl AP2¬PAP10
20 17 19 eqeltrd AP2¬PAϕP0
21 zexpcl AϕP0AϕP
22 5 20 21 syl2anc AP2¬PAAϕP
23 1zzd AP2¬PA1
24 moddvds PAϕP1AϕPmodP=1modPPAϕP1
25 4 22 23 24 syl3anc AP2¬PAAϕPmodP=1modPPAϕP1
26 15 25 mpbid AP2¬PAPAϕP1
27 19 nn0cnd AP2¬PAP1
28 2cnd AP2¬PA2
29 2ne0 20
30 29 a1i AP2¬PA20
31 27 28 30 divcan1d AP2¬PAP122=P1
32 17 31 eqtr4d AP2¬PAϕP=P122
33 32 oveq2d AP2¬PAAϕP=AP122
34 5 zcnd AP2¬PAA
35 2nn0 20
36 35 a1i AP2¬PA20
37 oddprm P2P12
38 37 3ad2ant2 AP2¬PAP12
39 38 nnnn0d AP2¬PAP120
40 34 36 39 expmuld AP2¬PAAP122=AP122
41 33 40 eqtrd AP2¬PAAϕP=AP122
42 41 oveq1d AP2¬PAAϕP1=AP1221
43 sq1 12=1
44 43 oveq2i AP12212=AP1221
45 42 44 eqtr4di AP2¬PAAϕP1=AP12212
46 zexpcl AP120AP12
47 5 39 46 syl2anc AP2¬PAAP12
48 47 zcnd AP2¬PAAP12
49 ax-1cn 1
50 subsq AP121AP12212=AP12+1AP121
51 48 49 50 sylancl AP2¬PAAP12212=AP12+1AP121
52 45 51 eqtrd AP2¬PAAϕP1=AP12+1AP121
53 26 52 breqtrd AP2¬PAPAP12+1AP121
54 47 peano2zd AP2¬PAAP12+1
55 peano2zm AP12AP121
56 47 55 syl AP2¬PAAP121
57 euclemma PAP12+1AP121PAP12+1AP121PAP12+1PAP121
58 2 54 56 57 syl3anc AP2¬PAPAP12+1AP121PAP12+1PAP121
59 53 58 mpbid AP2¬PAPAP12+1PAP121
60 dvdsval3 PAP12+1PAP12+1AP12+1modP=0
61 4 54 60 syl2anc AP2¬PAPAP12+1AP12+1modP=0
62 2z 2
63 62 a1i AP2¬PA2
64 moddvds PAP12+12AP12+1modP=2modPPAP12+1-2
65 4 54 63 64 syl3anc AP2¬PAAP12+1modP=2modPPAP12+1-2
66 2re 2
67 66 a1i AP2¬PA2
68 4 nnrpd AP2¬PAP+
69 0le2 02
70 69 a1i AP2¬PA02
71 4 nnred AP2¬PAP
72 prmuz2 PP2
73 2 72 syl AP2¬PAP2
74 eluzle P22P
75 73 74 syl AP2¬PA2P
76 eldifsni P2P2
77 76 3ad2ant2 AP2¬PAP2
78 67 71 75 77 leneltd AP2¬PA2<P
79 modid 2P+022<P2modP=2
80 67 68 70 78 79 syl22anc AP2¬PA2modP=2
81 80 eqeq2d AP2¬PAAP12+1modP=2modPAP12+1modP=2
82 df-2 2=1+1
83 82 oveq2i AP12+1-2=AP12+1-1+1
84 49 a1i AP2¬PA1
85 48 84 84 pnpcan2d AP2¬PAAP12+1-1+1=AP121
86 83 85 eqtrid AP2¬PAAP12+1-2=AP121
87 86 breq2d AP2¬PAPAP12+1-2PAP121
88 65 81 87 3bitr3rd AP2¬PAPAP121AP12+1modP=2
89 61 88 orbi12d AP2¬PAPAP12+1PAP121AP12+1modP=0AP12+1modP=2
90 59 89 mpbid AP2¬PAAP12+1modP=0AP12+1modP=2
91 ovex AP12+1modPV
92 91 elpr AP12+1modP02AP12+1modP=0AP12+1modP=2
93 90 92 sylibr AP2¬PAAP12+1modP02