Description: Two ways to say A == B (mod N ), see also definition in ApostolNT p. 106. (Contributed by Mario Carneiro, 18-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | moddvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnrp | |
|
2 | 1 | adantr | |
3 | 0mod | |
|
4 | 2 3 | syl | |
5 | 4 | eqeq2d | |
6 | zre | |
|
7 | 6 | ad2antrl | |
8 | zre | |
|
9 | 8 | ad2antll | |
10 | 9 | renegcld | |
11 | modadd1 | |
|
12 | 11 | 3expia | |
13 | 7 9 10 2 12 | syl22anc | |
14 | 7 | recnd | |
15 | 9 | recnd | |
16 | 14 15 | negsubd | |
17 | 16 | oveq1d | |
18 | 15 | negidd | |
19 | 18 | oveq1d | |
20 | 17 19 | eqeq12d | |
21 | 13 20 | sylibd | |
22 | 7 9 | resubcld | |
23 | 0red | |
|
24 | modadd1 | |
|
25 | 24 | 3expia | |
26 | 22 23 9 2 25 | syl22anc | |
27 | 14 15 | npcand | |
28 | 27 | oveq1d | |
29 | 15 | addlidd | |
30 | 29 | oveq1d | |
31 | 28 30 | eqeq12d | |
32 | 26 31 | sylibd | |
33 | 21 32 | impbid | |
34 | zsubcl | |
|
35 | dvdsval3 | |
|
36 | 34 35 | sylan2 | |
37 | 5 33 36 | 3bitr4d | |
38 | 37 | 3impb | |