Metamath Proof Explorer


Theorem 0mod

Description: Special case: 0 modulo a positive real number is 0. (Contributed by Mario Carneiro, 22-Feb-2014)

Ref Expression
Assertion 0mod N+0modN=0

Proof

Step Hyp Ref Expression
1 0re 0
2 1 jctl N+0N+
3 rpgt0 N+0<N
4 0le0 00
5 3 4 jctil N+000<N
6 modid 0N+000<N0modN=0
7 2 5 6 syl2anc N+0modN=0