| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modval |
|
| 2 |
1
|
adantr |
|
| 3 |
|
rerpdivcl |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
recnd |
|
| 6 |
|
addlid |
|
| 7 |
6
|
fveq2d |
|
| 8 |
5 7
|
syl |
|
| 9 |
|
rpregt0 |
|
| 10 |
|
divge0 |
|
| 11 |
9 10
|
sylan2 |
|
| 12 |
11
|
an32s |
|
| 13 |
12
|
adantrr |
|
| 14 |
|
simpr |
|
| 15 |
|
rpcn |
|
| 16 |
15
|
mulridd |
|
| 17 |
16
|
adantr |
|
| 18 |
14 17
|
breqtrrd |
|
| 19 |
18
|
ad2ant2l |
|
| 20 |
|
simpll |
|
| 21 |
9
|
ad2antlr |
|
| 22 |
|
1re |
|
| 23 |
|
ltdivmul |
|
| 24 |
22 23
|
mp3an2 |
|
| 25 |
20 21 24
|
syl2anc |
|
| 26 |
19 25
|
mpbird |
|
| 27 |
|
0z |
|
| 28 |
|
flbi2 |
|
| 29 |
27 4 28
|
sylancr |
|
| 30 |
13 26 29
|
mpbir2and |
|
| 31 |
8 30
|
eqtr3d |
|
| 32 |
31
|
oveq2d |
|
| 33 |
15
|
mul01d |
|
| 34 |
33
|
ad2antlr |
|
| 35 |
32 34
|
eqtrd |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
recn |
|
| 38 |
37
|
subid1d |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
36 39
|
eqtrd |
|
| 41 |
2 40
|
eqtrd |
|