Metamath Proof Explorer


Theorem phiprm

Description: Value of the Euler phi function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion phiprm PϕP=P1

Proof

Step Hyp Ref Expression
1 1nn 1
2 phiprmpw P1ϕP1=P11P1
3 1 2 mpan2 PϕP1=P11P1
4 prmz PP
5 4 zcnd PP
6 5 exp1d PP1=P
7 6 fveq2d PϕP1=ϕP
8 1m1e0 11=0
9 8 oveq2i P11=P0
10 5 exp0d PP0=1
11 9 10 eqtrid PP11=1
12 11 oveq1d PP11P1=1P1
13 ax-1cn 1
14 subcl P1P1
15 5 13 14 sylancl PP1
16 15 mullidd P1P1=P1
17 12 16 eqtrd PP11P1=P1
18 3 7 17 3eqtr3d PϕP=P1