Metamath Proof Explorer


Theorem lgslem2

Description: The set Z of all integers with absolute value at most 1 contains { -u 1 , 0 , 1 } . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgslem2.z Z=x|x1
Assertion lgslem2 1Z0Z1Z

Proof

Step Hyp Ref Expression
1 lgslem2.z Z=x|x1
2 neg1z 1
3 1le1 11
4 fveq2 x=1x=1
5 ax-1cn 1
6 5 absnegi 1=1
7 abs1 1=1
8 6 7 eqtri 1=1
9 4 8 eqtrdi x=1x=1
10 9 breq1d x=1x111
11 10 1 elrab2 1Z111
12 2 3 11 mpbir2an 1Z
13 0z 0
14 0le1 01
15 fveq2 x=0x=0
16 abs0 0=0
17 15 16 eqtrdi x=0x=0
18 17 breq1d x=0x101
19 18 1 elrab2 0Z001
20 13 14 19 mpbir2an 0Z
21 1z 1
22 fveq2 x=1x=1
23 22 7 eqtrdi x=1x=1
24 23 breq1d x=1x111
25 24 1 elrab2 1Z111
26 21 3 25 mpbir2an 1Z
27 12 20 26 3pm3.2i 1Z0Z1Z