Description: The set Z of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lgslem2.z | |
|
Assertion | lgslem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lgslem2.z | |
|
2 | zmulcl | |
|
3 | 2 | ad2ant2r | |
4 | zcn | |
|
5 | zcn | |
|
6 | absmul | |
|
7 | 4 5 6 | syl2an | |
8 | 7 | ad2ant2r | |
9 | abscl | |
|
10 | absge0 | |
|
11 | 9 10 | jca | |
12 | 4 11 | syl | |
13 | 12 | adantr | |
14 | 1red | |
|
15 | abscl | |
|
16 | absge0 | |
|
17 | 15 16 | jca | |
18 | 5 17 | syl | |
19 | 18 | adantl | |
20 | lemul12a | |
|
21 | 13 14 19 14 20 | syl22anc | |
22 | 21 | imp | |
23 | 22 | an4s | |
24 | 1t1e1 | |
|
25 | 23 24 | breqtrdi | |
26 | 8 25 | eqbrtrd | |
27 | 3 26 | jca | |
28 | fveq2 | |
|
29 | 28 | breq1d | |
30 | 29 1 | elrab2 | |
31 | fveq2 | |
|
32 | 31 | breq1d | |
33 | 32 1 | elrab2 | |
34 | 30 33 | anbi12i | |
35 | fveq2 | |
|
36 | 35 | breq1d | |
37 | 36 1 | elrab2 | |
38 | 27 34 37 | 3imtr4i | |