Metamath Proof Explorer


Theorem lgslem3

Description: The set Z of all integers with absolute value at most 1 is closed under multiplication. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgslem2.z Z=x|x1
Assertion lgslem3 AZBZABZ

Proof

Step Hyp Ref Expression
1 lgslem2.z Z=x|x1
2 zmulcl ABAB
3 2 ad2ant2r AA1BB1AB
4 zcn AA
5 zcn BB
6 absmul ABAB=AB
7 4 5 6 syl2an ABAB=AB
8 7 ad2ant2r AA1BB1AB=AB
9 abscl AA
10 absge0 A0A
11 9 10 jca AA0A
12 4 11 syl AA0A
13 12 adantr ABA0A
14 1red AB1
15 abscl BB
16 absge0 B0B
17 15 16 jca BB0B
18 5 17 syl BB0B
19 18 adantl ABB0B
20 lemul12a A0A1B0B1A1B1AB11
21 13 14 19 14 20 syl22anc ABA1B1AB11
22 21 imp ABA1B1AB11
23 22 an4s AA1BB1AB11
24 1t1e1 11=1
25 23 24 breqtrdi AA1BB1AB1
26 8 25 eqbrtrd AA1BB1AB1
27 3 26 jca AA1BB1ABAB1
28 fveq2 x=Ax=A
29 28 breq1d x=Ax1A1
30 29 1 elrab2 AZAA1
31 fveq2 x=Bx=B
32 31 breq1d x=Bx1B1
33 32 1 elrab2 BZBB1
34 30 33 anbi12i AZBZAA1BB1
35 fveq2 x=ABx=AB
36 35 breq1d x=ABx1AB1
37 36 1 elrab2 ABZABAB1
38 27 34 37 3imtr4i AZBZABZ