Metamath Proof Explorer


Theorem absmul

Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of Gleason p. 133. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absmul ABAB=AB

Proof

Step Hyp Ref Expression
1 cjmul ABAB=AB
2 1 oveq2d ABABAB=ABAB
3 simpl ABA
4 simpr ABB
5 3 cjcld ABA
6 4 cjcld ABB
7 3 4 5 6 mul4d ABABAB=AABB
8 2 7 eqtrd ABABAB=AABB
9 8 fveq2d ABABAB=AABB
10 cjmulrcl AAA
11 cjmulge0 A0AA
12 10 11 jca AAA0AA
13 cjmulrcl BBB
14 cjmulge0 B0BB
15 13 14 jca BBB0BB
16 sqrtmul AA0AABB0BBAABB=AABB
17 12 15 16 syl2an ABAABB=AABB
18 9 17 eqtrd ABABAB=AABB
19 mulcl ABAB
20 absval ABAB=ABAB
21 19 20 syl ABAB=ABAB
22 absval AA=AA
23 absval BB=BB
24 22 23 oveqan12d ABAB=AABB
25 18 21 24 3eqtr4d ABAB=AB