Step |
Hyp |
Ref |
Expression |
1 |
|
cjmul |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A x. B ) ) = ( ( * ` A ) x. ( * ` B ) ) ) |
2 |
1
|
oveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. ( * ` ( A x. B ) ) ) = ( ( A x. B ) x. ( ( * ` A ) x. ( * ` B ) ) ) ) |
3 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
4 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
5 |
3
|
cjcld |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` A ) e. CC ) |
6 |
4
|
cjcld |
|- ( ( A e. CC /\ B e. CC ) -> ( * ` B ) e. CC ) |
7 |
3 4 5 6
|
mul4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. ( ( * ` A ) x. ( * ` B ) ) ) = ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) |
8 |
2 7
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. ( * ` ( A x. B ) ) ) = ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) |
9 |
8
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) = ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) ) |
10 |
|
cjmulrcl |
|- ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) |
11 |
|
cjmulge0 |
|- ( A e. CC -> 0 <_ ( A x. ( * ` A ) ) ) |
12 |
10 11
|
jca |
|- ( A e. CC -> ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) ) |
13 |
|
cjmulrcl |
|- ( B e. CC -> ( B x. ( * ` B ) ) e. RR ) |
14 |
|
cjmulge0 |
|- ( B e. CC -> 0 <_ ( B x. ( * ` B ) ) ) |
15 |
13 14
|
jca |
|- ( B e. CC -> ( ( B x. ( * ` B ) ) e. RR /\ 0 <_ ( B x. ( * ` B ) ) ) ) |
16 |
|
sqrtmul |
|- ( ( ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) /\ ( ( B x. ( * ` B ) ) e. RR /\ 0 <_ ( B x. ( * ` B ) ) ) ) -> ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
17 |
12 15 16
|
syl2an |
|- ( ( A e. CC /\ B e. CC ) -> ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
18 |
9 17
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
19 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
20 |
|
absval |
|- ( ( A x. B ) e. CC -> ( abs ` ( A x. B ) ) = ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) ) |
21 |
19 20
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. B ) ) = ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) ) |
22 |
|
absval |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
23 |
|
absval |
|- ( B e. CC -> ( abs ` B ) = ( sqrt ` ( B x. ( * ` B ) ) ) ) |
24 |
22 23
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) x. ( abs ` B ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
25 |
18 21 24
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. B ) ) = ( ( abs ` A ) x. ( abs ` B ) ) ) |