Metamath Proof Explorer


Theorem mul4d

Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses muld.1
|- ( ph -> A e. CC )
addcomd.2
|- ( ph -> B e. CC )
addcand.3
|- ( ph -> C e. CC )
mul4d.4
|- ( ph -> D e. CC )
Assertion mul4d
|- ( ph -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) ) )

Proof

Step Hyp Ref Expression
1 muld.1
 |-  ( ph -> A e. CC )
2 addcomd.2
 |-  ( ph -> B e. CC )
3 addcand.3
 |-  ( ph -> C e. CC )
4 mul4d.4
 |-  ( ph -> D e. CC )
5 mul4
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) ) )
6 1 2 3 4 5 syl22anc
 |-  ( ph -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) ) )