| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgslem2.z |
|- Z = { x e. ZZ | ( abs ` x ) <_ 1 } |
| 2 |
|
neg1z |
|- -u 1 e. ZZ |
| 3 |
|
1le1 |
|- 1 <_ 1 |
| 4 |
|
fveq2 |
|- ( x = -u 1 -> ( abs ` x ) = ( abs ` -u 1 ) ) |
| 5 |
|
ax-1cn |
|- 1 e. CC |
| 6 |
5
|
absnegi |
|- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 7 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 8 |
6 7
|
eqtri |
|- ( abs ` -u 1 ) = 1 |
| 9 |
4 8
|
eqtrdi |
|- ( x = -u 1 -> ( abs ` x ) = 1 ) |
| 10 |
9
|
breq1d |
|- ( x = -u 1 -> ( ( abs ` x ) <_ 1 <-> 1 <_ 1 ) ) |
| 11 |
10 1
|
elrab2 |
|- ( -u 1 e. Z <-> ( -u 1 e. ZZ /\ 1 <_ 1 ) ) |
| 12 |
2 3 11
|
mpbir2an |
|- -u 1 e. Z |
| 13 |
|
0z |
|- 0 e. ZZ |
| 14 |
|
0le1 |
|- 0 <_ 1 |
| 15 |
|
fveq2 |
|- ( x = 0 -> ( abs ` x ) = ( abs ` 0 ) ) |
| 16 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 17 |
15 16
|
eqtrdi |
|- ( x = 0 -> ( abs ` x ) = 0 ) |
| 18 |
17
|
breq1d |
|- ( x = 0 -> ( ( abs ` x ) <_ 1 <-> 0 <_ 1 ) ) |
| 19 |
18 1
|
elrab2 |
|- ( 0 e. Z <-> ( 0 e. ZZ /\ 0 <_ 1 ) ) |
| 20 |
13 14 19
|
mpbir2an |
|- 0 e. Z |
| 21 |
|
1z |
|- 1 e. ZZ |
| 22 |
|
fveq2 |
|- ( x = 1 -> ( abs ` x ) = ( abs ` 1 ) ) |
| 23 |
22 7
|
eqtrdi |
|- ( x = 1 -> ( abs ` x ) = 1 ) |
| 24 |
23
|
breq1d |
|- ( x = 1 -> ( ( abs ` x ) <_ 1 <-> 1 <_ 1 ) ) |
| 25 |
24 1
|
elrab2 |
|- ( 1 e. Z <-> ( 1 e. ZZ /\ 1 <_ 1 ) ) |
| 26 |
21 3 25
|
mpbir2an |
|- 1 e. Z |
| 27 |
12 20 26
|
3pm3.2i |
|- ( -u 1 e. Z /\ 0 e. Z /\ 1 e. Z ) |