| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgslem2.z |
⊢ 𝑍 = { 𝑥 ∈ ℤ ∣ ( abs ‘ 𝑥 ) ≤ 1 } |
| 2 |
|
neg1z |
⊢ - 1 ∈ ℤ |
| 3 |
|
1le1 |
⊢ 1 ≤ 1 |
| 4 |
|
fveq2 |
⊢ ( 𝑥 = - 1 → ( abs ‘ 𝑥 ) = ( abs ‘ - 1 ) ) |
| 5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 6 |
5
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
| 7 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 8 |
6 7
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
| 9 |
4 8
|
eqtrdi |
⊢ ( 𝑥 = - 1 → ( abs ‘ 𝑥 ) = 1 ) |
| 10 |
9
|
breq1d |
⊢ ( 𝑥 = - 1 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 1 ≤ 1 ) ) |
| 11 |
10 1
|
elrab2 |
⊢ ( - 1 ∈ 𝑍 ↔ ( - 1 ∈ ℤ ∧ 1 ≤ 1 ) ) |
| 12 |
2 3 11
|
mpbir2an |
⊢ - 1 ∈ 𝑍 |
| 13 |
|
0z |
⊢ 0 ∈ ℤ |
| 14 |
|
0le1 |
⊢ 0 ≤ 1 |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( abs ‘ 𝑥 ) = ( abs ‘ 0 ) ) |
| 16 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 17 |
15 16
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( abs ‘ 𝑥 ) = 0 ) |
| 18 |
17
|
breq1d |
⊢ ( 𝑥 = 0 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 0 ≤ 1 ) ) |
| 19 |
18 1
|
elrab2 |
⊢ ( 0 ∈ 𝑍 ↔ ( 0 ∈ ℤ ∧ 0 ≤ 1 ) ) |
| 20 |
13 14 19
|
mpbir2an |
⊢ 0 ∈ 𝑍 |
| 21 |
|
1z |
⊢ 1 ∈ ℤ |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = ( abs ‘ 1 ) ) |
| 23 |
22 7
|
eqtrdi |
⊢ ( 𝑥 = 1 → ( abs ‘ 𝑥 ) = 1 ) |
| 24 |
23
|
breq1d |
⊢ ( 𝑥 = 1 → ( ( abs ‘ 𝑥 ) ≤ 1 ↔ 1 ≤ 1 ) ) |
| 25 |
24 1
|
elrab2 |
⊢ ( 1 ∈ 𝑍 ↔ ( 1 ∈ ℤ ∧ 1 ≤ 1 ) ) |
| 26 |
21 3 25
|
mpbir2an |
⊢ 1 ∈ 𝑍 |
| 27 |
12 20 26
|
3pm3.2i |
⊢ ( - 1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍 ) |