Metamath Proof Explorer


Theorem absled

Description: Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses absltd.1 φA
absltd.2 φB
Assertion absled φABBAAB

Proof

Step Hyp Ref Expression
1 absltd.1 φA
2 absltd.2 φB
3 absle ABABBAAB
4 1 2 3 syl2anc φABBAAB