Metamath Proof Explorer


Theorem absled

Description: Absolute value and 'less than or equal to' relation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses absltd.1 ( 𝜑𝐴 ∈ ℝ )
absltd.2 ( 𝜑𝐵 ∈ ℝ )
Assertion absled ( 𝜑 → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( - 𝐵𝐴𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 absltd.1 ( 𝜑𝐴 ∈ ℝ )
2 absltd.2 ( 𝜑𝐵 ∈ ℝ )
3 absle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( - 𝐵𝐴𝐴𝐵 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ( ( abs ‘ 𝐴 ) ≤ 𝐵 ↔ ( - 𝐵𝐴𝐴𝐵 ) ) )