Metamath Proof Explorer


Theorem expcllem

Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005)

Ref Expression
Hypotheses expcllem.1 F
expcllem.2 xFyFxyF
expcllem.3 1F
Assertion expcllem AFB0ABF

Proof

Step Hyp Ref Expression
1 expcllem.1 F
2 expcllem.2 xFyFxyF
3 expcllem.3 1F
4 elnn0 B0BB=0
5 oveq2 z=1Az=A1
6 5 eleq1d z=1AzFA1F
7 6 imbi2d z=1AFAzFAFA1F
8 oveq2 z=wAz=Aw
9 8 eleq1d z=wAzFAwF
10 9 imbi2d z=wAFAzFAFAwF
11 oveq2 z=w+1Az=Aw+1
12 11 eleq1d z=w+1AzFAw+1F
13 12 imbi2d z=w+1AFAzFAFAw+1F
14 oveq2 z=BAz=AB
15 14 eleq1d z=BAzFABF
16 15 imbi2d z=BAFAzFAFABF
17 1 sseli AFA
18 exp1 AA1=A
19 17 18 syl AFA1=A
20 19 eleq1d AFA1FAF
21 20 ibir AFA1F
22 2 caovcl AwFAFAwAF
23 22 ancoms AFAwFAwAF
24 23 adantlr AFwAwFAwAF
25 nnnn0 ww0
26 expp1 Aw0Aw+1=AwA
27 17 25 26 syl2an AFwAw+1=AwA
28 27 eleq1d AFwAw+1FAwAF
29 28 adantr AFwAwFAw+1FAwAF
30 24 29 mpbird AFwAwFAw+1F
31 30 exp31 AFwAwFAw+1F
32 31 com12 wAFAwFAw+1F
33 32 a2d wAFAwFAFAw+1F
34 7 10 13 16 21 33 nnind BAFABF
35 34 impcom AFBABF
36 oveq2 B=0AB=A0
37 exp0 AA0=1
38 17 37 syl AFA0=1
39 36 38 sylan9eqr AFB=0AB=1
40 39 3 eqeltrdi AFB=0ABF
41 35 40 jaodan AFBB=0ABF
42 4 41 sylan2b AFB0ABF