Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expcllem.1 | |
|
expcllem.2 | |
||
expcllem.3 | |
||
Assertion | expcllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcllem.1 | |
|
2 | expcllem.2 | |
|
3 | expcllem.3 | |
|
4 | elnn0 | |
|
5 | oveq2 | |
|
6 | 5 | eleq1d | |
7 | 6 | imbi2d | |
8 | oveq2 | |
|
9 | 8 | eleq1d | |
10 | 9 | imbi2d | |
11 | oveq2 | |
|
12 | 11 | eleq1d | |
13 | 12 | imbi2d | |
14 | oveq2 | |
|
15 | 14 | eleq1d | |
16 | 15 | imbi2d | |
17 | 1 | sseli | |
18 | exp1 | |
|
19 | 17 18 | syl | |
20 | 19 | eleq1d | |
21 | 20 | ibir | |
22 | 2 | caovcl | |
23 | 22 | ancoms | |
24 | 23 | adantlr | |
25 | nnnn0 | |
|
26 | expp1 | |
|
27 | 17 25 26 | syl2an | |
28 | 27 | eleq1d | |
29 | 28 | adantr | |
30 | 24 29 | mpbird | |
31 | 30 | exp31 | |
32 | 31 | com12 | |
33 | 32 | a2d | |
34 | 7 10 13 16 21 33 | nnind | |
35 | 34 | impcom | |
36 | oveq2 | |
|
37 | exp0 | |
|
38 | 17 37 | syl | |
39 | 36 38 | sylan9eqr | |
40 | 39 3 | eqeltrdi | |
41 | 35 40 | jaodan | |
42 | 4 41 | sylan2b | |