Metamath Proof Explorer


Theorem pczcl

Description: Closure of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pczcl PNN0PpCntN0

Proof

Step Hyp Ref Expression
1 eqid supx0|PxN<=supx0|PxN<
2 1 pczpre PNN0PpCntN=supx0|PxN<
3 prmuz2 PP2
4 eqid x0|PxN=x0|PxN
5 4 1 pcprecl P2NN0supx0|PxN<0Psupx0|PxN<N
6 3 5 sylan PNN0supx0|PxN<0Psupx0|PxN<N
7 6 simpld PNN0supx0|PxN<0
8 2 7 eqeltrd PNN0PpCntN0