Metamath Proof Explorer


Definition df-pc

Description: Define the prime count function, which returns the largest exponent of a given prime (or other positive integer) that divides the number. For rational numbers, it returns negative values according to the power of a prime in the denominator. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion df-pc pCnt=p,rifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpc classpCnt
1 vp setvarp
2 cprime class
3 vr setvarr
4 cq class
5 3 cv setvarr
6 cc0 class0
7 5 6 wceq wffr=0
8 cpnf class+∞
9 vz setvarz
10 vx setvarx
11 cz class
12 vy setvary
13 cn class
14 10 cv setvarx
15 cdiv class÷
16 12 cv setvary
17 14 16 15 co classxy
18 5 17 wceq wffr=xy
19 9 cv setvarz
20 vn setvarn
21 cn0 class0
22 1 cv setvarp
23 cexp class^
24 20 cv setvarn
25 22 24 23 co classpn
26 cdvds class
27 25 14 26 wbr wffpnx
28 27 20 21 crab classn0|pnx
29 cr class
30 clt class<
31 28 29 30 csup classsupn0|pnx<
32 cmin class
33 25 16 26 wbr wffpny
34 33 20 21 crab classn0|pny
35 34 29 30 csup classsupn0|pny<
36 31 35 32 co classsupn0|pnx<supn0|pny<
37 19 36 wceq wffz=supn0|pnx<supn0|pny<
38 18 37 wa wffr=xyz=supn0|pnx<supn0|pny<
39 38 12 13 wrex wffyr=xyz=supn0|pnx<supn0|pny<
40 39 10 11 wrex wffxyr=xyz=supn0|pnx<supn0|pny<
41 40 9 cio classιz|xyr=xyz=supn0|pnx<supn0|pny<
42 7 8 41 cif classifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<
43 1 3 2 4 42 cmpo classp,rifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<
44 0 43 wceq wffpCnt=p,rifr=0+∞ιz|xyr=xyz=supn0|pnx<supn0|pny<