Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pclem.1 | |
|
Assertion | pclem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclem.1 | |
|
2 | 1 | ssrab3 | |
3 | nn0ssz | |
|
4 | 2 3 | sstri | |
5 | 4 | a1i | |
6 | 0nn0 | |
|
7 | 6 | a1i | |
8 | eluzelcn | |
|
9 | 8 | adantr | |
10 | 9 | exp0d | |
11 | 1dvds | |
|
12 | 11 | ad2antrl | |
13 | 10 12 | eqbrtrd | |
14 | oveq2 | |
|
15 | 14 | breq1d | |
16 | 15 1 | elrab2 | |
17 | 7 13 16 | sylanbrc | |
18 | 17 | ne0d | |
19 | nnssz | |
|
20 | zcn | |
|
21 | 20 | abscld | |
22 | 21 | ad2antrl | |
23 | eluzelre | |
|
24 | 23 | adantr | |
25 | eluz2gt1 | |
|
26 | 25 | adantr | |
27 | expnbnd | |
|
28 | 22 24 26 27 | syl3anc | |
29 | simprr | |
|
30 | oveq2 | |
|
31 | 30 | breq1d | |
32 | 31 1 | elrab2 | |
33 | 29 32 | sylib | |
34 | 33 | simprd | |
35 | eluz2nn | |
|
36 | 35 | ad2antrr | |
37 | 33 | simpld | |
38 | 36 37 | nnexpcld | |
39 | 38 | nnzd | |
40 | simplrl | |
|
41 | simplrr | |
|
42 | dvdsleabs | |
|
43 | 39 40 41 42 | syl3anc | |
44 | 34 43 | mpd | |
45 | 38 | nnred | |
46 | 22 | adantr | |
47 | 23 | ad2antrr | |
48 | nnnn0 | |
|
49 | 48 | ad2antrl | |
50 | 47 49 | reexpcld | |
51 | lelttr | |
|
52 | 45 46 50 51 | syl3anc | |
53 | 44 52 | mpand | |
54 | 37 | nn0zd | |
55 | nnz | |
|
56 | 55 | ad2antrl | |
57 | 25 | ad2antrr | |
58 | 47 54 56 57 | ltexp2d | |
59 | 53 58 | sylibrd | |
60 | 37 | nn0red | |
61 | nnre | |
|
62 | 61 | ad2antrl | |
63 | ltle | |
|
64 | 60 62 63 | syl2anc | |
65 | 59 64 | syld | |
66 | 65 | anassrs | |
67 | 66 | ralrimdva | |
68 | 67 | reximdva | |
69 | 28 68 | mpd | |
70 | ssrexv | |
|
71 | 19 69 70 | mpsyl | |
72 | 5 18 71 | 3jca | |