Metamath Proof Explorer


Theorem pclem

Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypothesis pclem.1 A=n0|PnN
Assertion pclem P2NN0AAxyAyx

Proof

Step Hyp Ref Expression
1 pclem.1 A=n0|PnN
2 1 ssrab3 A0
3 nn0ssz 0
4 2 3 sstri A
5 4 a1i P2NN0A
6 0nn0 00
7 6 a1i P2NN000
8 eluzelcn P2P
9 8 adantr P2NN0P
10 9 exp0d P2NN0P0=1
11 1dvds N1N
12 11 ad2antrl P2NN01N
13 10 12 eqbrtrd P2NN0P0N
14 oveq2 n=0Pn=P0
15 14 breq1d n=0PnNP0N
16 15 1 elrab2 0A00P0N
17 7 13 16 sylanbrc P2NN00A
18 17 ne0d P2NN0A
19 nnssz
20 zcn NN
21 20 abscld NN
22 21 ad2antrl P2NN0N
23 eluzelre P2P
24 23 adantr P2NN0P
25 eluz2gt1 P21<P
26 25 adantr P2NN01<P
27 expnbnd NP1<PxN<Px
28 22 24 26 27 syl3anc P2NN0xN<Px
29 simprr P2NN0xyAyA
30 oveq2 n=yPn=Py
31 30 breq1d n=yPnNPyN
32 31 1 elrab2 yAy0PyN
33 29 32 sylib P2NN0xyAy0PyN
34 33 simprd P2NN0xyAPyN
35 eluz2nn P2P
36 35 ad2antrr P2NN0xyAP
37 33 simpld P2NN0xyAy0
38 36 37 nnexpcld P2NN0xyAPy
39 38 nnzd P2NN0xyAPy
40 simplrl P2NN0xyAN
41 simplrr P2NN0xyAN0
42 dvdsleabs PyNN0PyNPyN
43 39 40 41 42 syl3anc P2NN0xyAPyNPyN
44 34 43 mpd P2NN0xyAPyN
45 38 nnred P2NN0xyAPy
46 22 adantr P2NN0xyAN
47 23 ad2antrr P2NN0xyAP
48 nnnn0 xx0
49 48 ad2antrl P2NN0xyAx0
50 47 49 reexpcld P2NN0xyAPx
51 lelttr PyNPxPyNN<PxPy<Px
52 45 46 50 51 syl3anc P2NN0xyAPyNN<PxPy<Px
53 44 52 mpand P2NN0xyAN<PxPy<Px
54 37 nn0zd P2NN0xyAy
55 nnz xx
56 55 ad2antrl P2NN0xyAx
57 25 ad2antrr P2NN0xyA1<P
58 47 54 56 57 ltexp2d P2NN0xyAy<xPy<Px
59 53 58 sylibrd P2NN0xyAN<Pxy<x
60 37 nn0red P2NN0xyAy
61 nnre xx
62 61 ad2antrl P2NN0xyAx
63 ltle yxy<xyx
64 60 62 63 syl2anc P2NN0xyAy<xyx
65 59 64 syld P2NN0xyAN<Pxyx
66 65 anassrs P2NN0xyAN<Pxyx
67 66 ralrimdva P2NN0xN<PxyAyx
68 67 reximdva P2NN0xN<PxxyAyx
69 28 68 mpd P2NN0xyAyx
70 ssrexv xyAyxxyAyx
71 19 69 70 mpsyl P2NN0xyAyx
72 5 18 71 3jca P2NN0AAxyAyx