Metamath Proof Explorer


Theorem nnexpcld

Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses nnexpcld.1 φA
nnexpcld.2 φN0
Assertion nnexpcld φAN

Proof

Step Hyp Ref Expression
1 nnexpcld.1 φA
2 nnexpcld.2 φN0
3 nnexpcl AN0AN
4 1 2 3 syl2anc φAN