Step |
Hyp |
Ref |
Expression |
1 |
|
lhpne0.z |
|- .0. = ( 0. ` K ) |
2 |
|
lhpne0.h |
|- H = ( LHyp ` K ) |
3 |
|
eqid |
|- ( lt ` K ) = ( lt ` K ) |
4 |
3 1 2
|
lhp0lt |
|- ( ( K e. HL /\ W e. H ) -> .0. ( lt ` K ) W ) |
5 |
|
simpl |
|- ( ( K e. HL /\ W e. H ) -> K e. HL ) |
6 |
|
hlop |
|- ( K e. HL -> K e. OP ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 1
|
op0cl |
|- ( K e. OP -> .0. e. ( Base ` K ) ) |
9 |
6 8
|
syl |
|- ( K e. HL -> .0. e. ( Base ` K ) ) |
10 |
9
|
adantr |
|- ( ( K e. HL /\ W e. H ) -> .0. e. ( Base ` K ) ) |
11 |
|
simpr |
|- ( ( K e. HL /\ W e. H ) -> W e. H ) |
12 |
3
|
pltne |
|- ( ( K e. HL /\ .0. e. ( Base ` K ) /\ W e. H ) -> ( .0. ( lt ` K ) W -> .0. =/= W ) ) |
13 |
5 10 11 12
|
syl3anc |
|- ( ( K e. HL /\ W e. H ) -> ( .0. ( lt ` K ) W -> .0. =/= W ) ) |
14 |
4 13
|
mpd |
|- ( ( K e. HL /\ W e. H ) -> .0. =/= W ) |
15 |
14
|
necomd |
|- ( ( K e. HL /\ W e. H ) -> W =/= .0. ) |