Metamath Proof Explorer


Theorem lmhmlmod2

Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Assertion lmhmlmod2
|- ( F e. ( S LMHom T ) -> T e. LMod )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Scalar ` S ) = ( Scalar ` S )
2 eqid
 |-  ( Scalar ` T ) = ( Scalar ` T )
3 1 2 lmhmlem
 |-  ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ T e. LMod ) /\ ( F e. ( S GrpHom T ) /\ ( Scalar ` T ) = ( Scalar ` S ) ) ) )
4 3 simplrd
 |-  ( F e. ( S LMHom T ) -> T e. LMod )