Description: Closure of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismid.p | |- P = ( Base ` G ) |
|
| ismid.d | |- .- = ( dist ` G ) |
||
| ismid.i | |- I = ( Itv ` G ) |
||
| ismid.g | |- ( ph -> G e. TarskiG ) |
||
| ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
||
| lmif.m | |- M = ( ( lInvG ` G ) ` D ) |
||
| lmif.l | |- L = ( LineG ` G ) |
||
| lmif.d | |- ( ph -> D e. ran L ) |
||
| lmicl.1 | |- ( ph -> A e. P ) |
||
| Assertion | lmicl | |- ( ph -> ( M ` A ) e. P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | |- P = ( Base ` G ) |
|
| 2 | ismid.d | |- .- = ( dist ` G ) |
|
| 3 | ismid.i | |- I = ( Itv ` G ) |
|
| 4 | ismid.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | ismid.1 | |- ( ph -> G TarskiGDim>= 2 ) |
|
| 6 | lmif.m | |- M = ( ( lInvG ` G ) ` D ) |
|
| 7 | lmif.l | |- L = ( LineG ` G ) |
|
| 8 | lmif.d | |- ( ph -> D e. ran L ) |
|
| 9 | lmicl.1 | |- ( ph -> A e. P ) |
|
| 10 | 1 2 3 4 5 6 7 8 | lmif | |- ( ph -> M : P --> P ) |
| 11 | 10 9 | ffvelcdmd | |- ( ph -> ( M ` A ) e. P ) |