| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismid.p |
|- P = ( Base ` G ) |
| 2 |
|
ismid.d |
|- .- = ( dist ` G ) |
| 3 |
|
ismid.i |
|- I = ( Itv ` G ) |
| 4 |
|
ismid.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
ismid.1 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 6 |
|
lmif.m |
|- M = ( ( lInvG ` G ) ` D ) |
| 7 |
|
lmif.l |
|- L = ( LineG ` G ) |
| 8 |
|
lmif.d |
|- ( ph -> D e. ran L ) |
| 9 |
|
df-lmi |
|- lInvG = ( g e. _V |-> ( d e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) ) |
| 10 |
|
fveq2 |
|- ( g = G -> ( LineG ` g ) = ( LineG ` G ) ) |
| 11 |
10 7
|
eqtr4di |
|- ( g = G -> ( LineG ` g ) = L ) |
| 12 |
11
|
rneqd |
|- ( g = G -> ran ( LineG ` g ) = ran L ) |
| 13 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
| 14 |
13 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
| 15 |
|
fveq2 |
|- ( g = G -> ( midG ` g ) = ( midG ` G ) ) |
| 16 |
15
|
oveqd |
|- ( g = G -> ( a ( midG ` g ) b ) = ( a ( midG ` G ) b ) ) |
| 17 |
16
|
eleq1d |
|- ( g = G -> ( ( a ( midG ` g ) b ) e. d <-> ( a ( midG ` G ) b ) e. d ) ) |
| 18 |
|
eqidd |
|- ( g = G -> d = d ) |
| 19 |
|
fveq2 |
|- ( g = G -> ( perpG ` g ) = ( perpG ` G ) ) |
| 20 |
11
|
oveqd |
|- ( g = G -> ( a ( LineG ` g ) b ) = ( a L b ) ) |
| 21 |
18 19 20
|
breq123d |
|- ( g = G -> ( d ( perpG ` g ) ( a ( LineG ` g ) b ) <-> d ( perpG ` G ) ( a L b ) ) ) |
| 22 |
21
|
orbi1d |
|- ( g = G -> ( ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) <-> ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) |
| 23 |
17 22
|
anbi12d |
|- ( g = G -> ( ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) <-> ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
| 24 |
14 23
|
riotaeqbidv |
|- ( g = G -> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) = ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
| 25 |
14 24
|
mpteq12dv |
|- ( g = G -> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
| 26 |
12 25
|
mpteq12dv |
|- ( g = G -> ( d e. ran ( LineG ` g ) |-> ( a e. ( Base ` g ) |-> ( iota_ b e. ( Base ` g ) ( ( a ( midG ` g ) b ) e. d /\ ( d ( perpG ` g ) ( a ( LineG ` g ) b ) \/ a = b ) ) ) ) ) = ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) ) |
| 27 |
4
|
elexd |
|- ( ph -> G e. _V ) |
| 28 |
7
|
fvexi |
|- L e. _V |
| 29 |
|
rnexg |
|- ( L e. _V -> ran L e. _V ) |
| 30 |
|
mptexg |
|- ( ran L e. _V -> ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) e. _V ) |
| 31 |
28 29 30
|
mp2b |
|- ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) e. _V |
| 32 |
31
|
a1i |
|- ( ph -> ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) e. _V ) |
| 33 |
9 26 27 32
|
fvmptd3 |
|- ( ph -> ( lInvG ` G ) = ( d e. ran L |-> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) ) |
| 34 |
|
eleq2 |
|- ( d = D -> ( ( a ( midG ` G ) b ) e. d <-> ( a ( midG ` G ) b ) e. D ) ) |
| 35 |
|
breq1 |
|- ( d = D -> ( d ( perpG ` G ) ( a L b ) <-> D ( perpG ` G ) ( a L b ) ) ) |
| 36 |
35
|
orbi1d |
|- ( d = D -> ( ( d ( perpG ` G ) ( a L b ) \/ a = b ) <-> ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) |
| 37 |
34 36
|
anbi12d |
|- ( d = D -> ( ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) <-> ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
| 38 |
37
|
riotabidv |
|- ( d = D -> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) = ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) |
| 39 |
38
|
mpteq2dv |
|- ( d = D -> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
| 40 |
39
|
adantl |
|- ( ( ph /\ d = D ) -> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. d /\ ( d ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
| 41 |
1
|
fvexi |
|- P e. _V |
| 42 |
41
|
mptex |
|- ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) e. _V |
| 43 |
42
|
a1i |
|- ( ph -> ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) e. _V ) |
| 44 |
33 40 8 43
|
fvmptd |
|- ( ph -> ( ( lInvG ` G ) ` D ) = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
| 45 |
6 44
|
eqtrid |
|- ( ph -> M = ( a e. P |-> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) ) ) |
| 46 |
4
|
adantr |
|- ( ( ph /\ a e. P ) -> G e. TarskiG ) |
| 47 |
5
|
adantr |
|- ( ( ph /\ a e. P ) -> G TarskiGDim>= 2 ) |
| 48 |
8
|
adantr |
|- ( ( ph /\ a e. P ) -> D e. ran L ) |
| 49 |
|
simpr |
|- ( ( ph /\ a e. P ) -> a e. P ) |
| 50 |
1 2 3 46 47 7 48 49
|
lmieu |
|- ( ( ph /\ a e. P ) -> E! b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) |
| 51 |
|
riotacl |
|- ( E! b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) -> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) e. P ) |
| 52 |
50 51
|
syl |
|- ( ( ph /\ a e. P ) -> ( iota_ b e. P ( ( a ( midG ` G ) b ) e. D /\ ( D ( perpG ` G ) ( a L b ) \/ a = b ) ) ) e. P ) |
| 53 |
45 52
|
fmpt3d |
|- ( ph -> M : P --> P ) |