Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
lmif.m |
⊢ 𝑀 = ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) |
7 |
|
lmif.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
8 |
|
lmif.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
|
df-lmi |
⊢ lInvG = ( 𝑔 ∈ V ↦ ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = ( LineG ‘ 𝐺 ) ) |
11 |
10 7
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( LineG ‘ 𝑔 ) = 𝐿 ) |
12 |
11
|
rneqd |
⊢ ( 𝑔 = 𝐺 → ran ( LineG ‘ 𝑔 ) = ran 𝐿 ) |
13 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
14 |
13 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑃 ) |
15 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( midG ‘ 𝑔 ) = ( midG ‘ 𝐺 ) ) |
16 |
15
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) = ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑑 ↔ ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ) ) |
18 |
|
eqidd |
⊢ ( 𝑔 = 𝐺 → 𝑑 = 𝑑 ) |
19 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( ⟂G ‘ 𝑔 ) = ( ⟂G ‘ 𝐺 ) ) |
20 |
11
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) = ( 𝑎 𝐿 𝑏 ) ) |
21 |
18 19 20
|
breq123d |
⊢ ( 𝑔 = 𝐺 → ( 𝑑 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ↔ 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ) ) |
22 |
21
|
orbi1d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑑 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) |
23 |
17 22
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ↔ ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) |
24 |
14 23
|
riotaeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) = ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) |
25 |
14 24
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) = ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) |
26 |
12 25
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑑 ∈ ran ( LineG ‘ 𝑔 ) ↦ ( 𝑎 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑔 ) ( ( 𝑎 ( midG ‘ 𝑔 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝑔 ) ( 𝑎 ( LineG ‘ 𝑔 ) 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) = ( 𝑑 ∈ ran 𝐿 ↦ ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ) |
27 |
4
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
28 |
7
|
fvexi |
⊢ 𝐿 ∈ V |
29 |
|
rnexg |
⊢ ( 𝐿 ∈ V → ran 𝐿 ∈ V ) |
30 |
|
mptexg |
⊢ ( ran 𝐿 ∈ V → ( 𝑑 ∈ ran 𝐿 ↦ ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ∈ V ) |
31 |
28 29 30
|
mp2b |
⊢ ( 𝑑 ∈ ran 𝐿 ↦ ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → ( 𝑑 ∈ ran 𝐿 ↦ ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ∈ V ) |
33 |
9 26 27 32
|
fvmptd3 |
⊢ ( 𝜑 → ( lInvG ‘ 𝐺 ) = ( 𝑑 ∈ ran 𝐿 ↦ ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) ) |
34 |
|
eleq2 |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ↔ ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ) ) |
35 |
|
breq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ↔ 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ) ) |
36 |
35
|
orbi1d |
⊢ ( 𝑑 = 𝐷 → ( ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ↔ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) |
37 |
34 36
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ↔ ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) |
38 |
37
|
riotabidv |
⊢ ( 𝑑 = 𝐷 → ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) = ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) |
39 |
38
|
mpteq2dv |
⊢ ( 𝑑 = 𝐷 → ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) = ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 = 𝐷 ) → ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝑑 ∧ ( 𝑑 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) = ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) |
41 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
42 |
41
|
mptex |
⊢ ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ∈ V |
43 |
42
|
a1i |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ∈ V ) |
44 |
33 40 8 43
|
fvmptd |
⊢ ( 𝜑 → ( ( lInvG ‘ 𝐺 ) ‘ 𝐷 ) = ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) |
45 |
6 44
|
syl5eq |
⊢ ( 𝜑 → 𝑀 = ( 𝑎 ∈ 𝑃 ↦ ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ) ) |
46 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝐺 ∈ TarskiG ) |
47 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝐺 DimTarskiG≥ 2 ) |
48 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝐷 ∈ ran 𝐿 ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝑎 ∈ 𝑃 ) |
50 |
1 2 3 46 47 7 48 49
|
lmieu |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ∃! 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) |
51 |
|
riotacl |
⊢ ( ∃! 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) → ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ∈ 𝑃 ) |
52 |
50 51
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ℩ 𝑏 ∈ 𝑃 ( ( 𝑎 ( midG ‘ 𝐺 ) 𝑏 ) ∈ 𝐷 ∧ ( 𝐷 ( ⟂G ‘ 𝐺 ) ( 𝑎 𝐿 𝑏 ) ∨ 𝑎 = 𝑏 ) ) ) ∈ 𝑃 ) |
53 |
45 52
|
fmpt3d |
⊢ ( 𝜑 → 𝑀 : 𝑃 ⟶ 𝑃 ) |