Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpcxpcld.1 | |- ( ph -> A e. RR+ ) |
|
rpcxpcld.2 | |- ( ph -> B e. RR ) |
||
Assertion | logcxpd | |- ( ph -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpcxpcld.1 | |- ( ph -> A e. RR+ ) |
|
2 | rpcxpcld.2 | |- ( ph -> B e. RR ) |
|
3 | logcxp | |- ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) ) |