Metamath Proof Explorer


Theorem logcxpd

Description: Logarithm of a complex power. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses rpcxpcld.1
|- ( ph -> A e. RR+ )
rpcxpcld.2
|- ( ph -> B e. RR )
Assertion logcxpd
|- ( ph -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) )

Proof

Step Hyp Ref Expression
1 rpcxpcld.1
 |-  ( ph -> A e. RR+ )
2 rpcxpcld.2
 |-  ( ph -> B e. RR )
3 logcxp
 |-  ( ( A e. RR+ /\ B e. RR ) -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( log ` ( A ^c B ) ) = ( B x. ( log ` A ) ) )