Description: Principal ideal rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lpirring | |- ( R e. LPIR -> R e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
|
| 2 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
| 3 | 1 2 | islpir | |- ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) = ( LPIdeal ` R ) ) ) |
| 4 | 3 | simplbi | |- ( R e. LPIR -> R e. Ring ) |