| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 4 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 5 |
2 3 4
|
drngnidl |
|- ( R e. DivRing -> ( LIdeal ` R ) = { { ( 0g ` R ) } , ( Base ` R ) } ) |
| 6 |
|
eqid |
|- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
| 7 |
6 3
|
lpi0 |
|- ( R e. Ring -> { ( 0g ` R ) } e. ( LPIdeal ` R ) ) |
| 8 |
6 2
|
lpi1 |
|- ( R e. Ring -> ( Base ` R ) e. ( LPIdeal ` R ) ) |
| 9 |
7 8
|
prssd |
|- ( R e. Ring -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) |
| 10 |
1 9
|
syl |
|- ( R e. DivRing -> { { ( 0g ` R ) } , ( Base ` R ) } C_ ( LPIdeal ` R ) ) |
| 11 |
5 10
|
eqsstrd |
|- ( R e. DivRing -> ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) |
| 12 |
6 4
|
islpir2 |
|- ( R e. LPIR <-> ( R e. Ring /\ ( LIdeal ` R ) C_ ( LPIdeal ` R ) ) ) |
| 13 |
1 11 12
|
sylanbrc |
|- ( R e. DivRing -> R e. LPIR ) |