Step |
Hyp |
Ref |
Expression |
1 |
|
lpival.p |
|- P = ( LPIdeal ` R ) |
2 |
|
lpi0.z |
|- .0. = ( 0g ` R ) |
3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
4 |
3 2
|
ring0cl |
|- ( R e. Ring -> .0. e. ( Base ` R ) ) |
5 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
6 |
5 2
|
rsp0 |
|- ( R e. Ring -> ( ( RSpan ` R ) ` { .0. } ) = { .0. } ) |
7 |
6
|
eqcomd |
|- ( R e. Ring -> { .0. } = ( ( RSpan ` R ) ` { .0. } ) ) |
8 |
|
sneq |
|- ( g = .0. -> { g } = { .0. } ) |
9 |
8
|
fveq2d |
|- ( g = .0. -> ( ( RSpan ` R ) ` { g } ) = ( ( RSpan ` R ) ` { .0. } ) ) |
10 |
9
|
rspceeqv |
|- ( ( .0. e. ( Base ` R ) /\ { .0. } = ( ( RSpan ` R ) ` { .0. } ) ) -> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) |
11 |
4 7 10
|
syl2anc |
|- ( R e. Ring -> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) |
12 |
1 5 3
|
islpidl |
|- ( R e. Ring -> ( { .0. } e. P <-> E. g e. ( Base ` R ) { .0. } = ( ( RSpan ` R ) ` { g } ) ) ) |
13 |
11 12
|
mpbird |
|- ( R e. Ring -> { .0. } e. P ) |