Metamath Proof Explorer


Theorem rsp0

Description: The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses rspcl.k
|- K = ( RSpan ` R )
rsp0.z
|- .0. = ( 0g ` R )
Assertion rsp0
|- ( R e. Ring -> ( K ` { .0. } ) = { .0. } )

Proof

Step Hyp Ref Expression
1 rspcl.k
 |-  K = ( RSpan ` R )
2 rsp0.z
 |-  .0. = ( 0g ` R )
3 rlmlmod
 |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod )
4 rlm0
 |-  ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) )
5 2 4 eqtri
 |-  .0. = ( 0g ` ( ringLMod ` R ) )
6 rspval
 |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) )
7 1 6 eqtri
 |-  K = ( LSpan ` ( ringLMod ` R ) )
8 5 7 lspsn0
 |-  ( ( ringLMod ` R ) e. LMod -> ( K ` { .0. } ) = { .0. } )
9 3 8 syl
 |-  ( R e. Ring -> ( K ` { .0. } ) = { .0. } )