Metamath Proof Explorer


Theorem rspval

Description: Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion rspval
|- ( RSpan ` W ) = ( LSpan ` ( ringLMod ` W ) )

Proof

Step Hyp Ref Expression
1 df-rsp
 |-  RSpan = ( LSpan o. ringLMod )
2 1 fveq1i
 |-  ( RSpan ` W ) = ( ( LSpan o. ringLMod ) ` W )
3 00lsp
 |-  (/) = ( LSpan ` (/) )
4 rlmfn
 |-  ringLMod Fn _V
5 fnfun
 |-  ( ringLMod Fn _V -> Fun ringLMod )
6 4 5 ax-mp
 |-  Fun ringLMod
7 3 6 fvco4i
 |-  ( ( LSpan o. ringLMod ) ` W ) = ( LSpan ` ( ringLMod ` W ) )
8 2 7 eqtri
 |-  ( RSpan ` W ) = ( LSpan ` ( ringLMod ` W ) )