Step |
Hyp |
Ref |
Expression |
1 |
|
rlmval |
|- ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) |
2 |
1
|
a1i |
|- ( W e. X -> ( ringLMod ` W ) = ( ( subringAlg ` W ) ` ( Base ` W ) ) ) |
3 |
|
ssid |
|- ( Base ` W ) C_ ( Base ` W ) |
4 |
|
sraval |
|- ( ( W e. X /\ ( Base ` W ) C_ ( Base ` W ) ) -> ( ( subringAlg ` W ) ` ( Base ` W ) ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
5 |
3 4
|
mpan2 |
|- ( W e. X -> ( ( subringAlg ` W ) ` ( Base ` W ) ) = ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
7 |
6
|
ressid |
|- ( W e. X -> ( W |`s ( Base ` W ) ) = W ) |
8 |
7
|
opeq2d |
|- ( W e. X -> <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. = <. ( Scalar ` ndx ) , W >. ) |
9 |
8
|
oveq2d |
|- ( W e. X -> ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) = ( W sSet <. ( Scalar ` ndx ) , W >. ) ) |
10 |
9
|
oveq1d |
|- ( W e. X -> ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) = ( ( W sSet <. ( Scalar ` ndx ) , W >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) ) |
11 |
10
|
oveq1d |
|- ( W e. X -> ( ( ( W sSet <. ( Scalar ` ndx ) , ( W |`s ( Base ` W ) ) >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) = ( ( ( W sSet <. ( Scalar ` ndx ) , W >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |
12 |
2 5 11
|
3eqtrd |
|- ( W e. X -> ( ringLMod ` W ) = ( ( ( W sSet <. ( Scalar ` ndx ) , W >. ) sSet <. ( .s ` ndx ) , ( .r ` W ) >. ) sSet <. ( .i ` ndx ) , ( .r ` W ) >. ) ) |