Metamath Proof Explorer


Theorem rlmval2

Description: Value of the ring module extended. (Contributed by AV, 2-Dec-2018) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion rlmval2 WXringLModW=WsSetScalarndxWsSetndxWsSet𝑖ndxW

Proof

Step Hyp Ref Expression
1 rlmval ringLModW=subringAlgWBaseW
2 1 a1i WXringLModW=subringAlgWBaseW
3 ssid BaseWBaseW
4 sraval WXBaseWBaseWsubringAlgWBaseW=WsSetScalarndxW𝑠BaseWsSetndxWsSet𝑖ndxW
5 3 4 mpan2 WXsubringAlgWBaseW=WsSetScalarndxW𝑠BaseWsSetndxWsSet𝑖ndxW
6 eqid BaseW=BaseW
7 6 ressid WXW𝑠BaseW=W
8 7 opeq2d WXScalarndxW𝑠BaseW=ScalarndxW
9 8 oveq2d WXWsSetScalarndxW𝑠BaseW=WsSetScalarndxW
10 9 oveq1d WXWsSetScalarndxW𝑠BaseWsSetndxW=WsSetScalarndxWsSetndxW
11 10 oveq1d WXWsSetScalarndxW𝑠BaseWsSetndxWsSet𝑖ndxW=WsSetScalarndxWsSetndxWsSet𝑖ndxW
12 2 5 11 3eqtrd WXringLModW=WsSetScalarndxWsSetndxWsSet𝑖ndxW