Metamath Proof Explorer


Theorem drnglpir

Description: Division rings are principal ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Assertion drnglpir ( 𝑅 ∈ DivRing → 𝑅 ∈ LPIR )

Proof

Step Hyp Ref Expression
1 drngring ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 eqid ( 0g𝑅 ) = ( 0g𝑅 )
4 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
5 2 3 4 drngnidl ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) = { { ( 0g𝑅 ) } , ( Base ‘ 𝑅 ) } )
6 eqid ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 )
7 6 3 lpi0 ( 𝑅 ∈ Ring → { ( 0g𝑅 ) } ∈ ( LPIdeal ‘ 𝑅 ) )
8 6 2 lpi1 ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) ∈ ( LPIdeal ‘ 𝑅 ) )
9 7 8 prssd ( 𝑅 ∈ Ring → { { ( 0g𝑅 ) } , ( Base ‘ 𝑅 ) } ⊆ ( LPIdeal ‘ 𝑅 ) )
10 1 9 syl ( 𝑅 ∈ DivRing → { { ( 0g𝑅 ) } , ( Base ‘ 𝑅 ) } ⊆ ( LPIdeal ‘ 𝑅 ) )
11 5 10 eqsstrd ( 𝑅 ∈ DivRing → ( LIdeal ‘ 𝑅 ) ⊆ ( LPIdeal ‘ 𝑅 ) )
12 6 4 islpir2 ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) ⊆ ( LPIdeal ‘ 𝑅 ) ) )
13 1 11 12 sylanbrc ( 𝑅 ∈ DivRing → 𝑅 ∈ LPIR )