Metamath Proof Explorer


Theorem lpi1

Description: The unit ideal is always principal. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p 𝑃 = ( LPIdeal ‘ 𝑅 )
lpi1.b 𝐵 = ( Base ‘ 𝑅 )
Assertion lpi1 ( 𝑅 ∈ Ring → 𝐵𝑃 )

Proof

Step Hyp Ref Expression
1 lpival.p 𝑃 = ( LPIdeal ‘ 𝑅 )
2 lpi1.b 𝐵 = ( Base ‘ 𝑅 )
3 eqid ( 1r𝑅 ) = ( 1r𝑅 )
4 2 3 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
5 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
6 5 2 3 rsp1 ( 𝑅 ∈ Ring → ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r𝑅 ) } ) = 𝐵 )
7 6 eqcomd ( 𝑅 ∈ Ring → 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r𝑅 ) } ) )
8 sneq ( 𝑔 = ( 1r𝑅 ) → { 𝑔 } = { ( 1r𝑅 ) } )
9 8 fveq2d ( 𝑔 = ( 1r𝑅 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r𝑅 ) } ) )
10 9 rspceeqv ( ( ( 1r𝑅 ) ∈ 𝐵𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { ( 1r𝑅 ) } ) ) → ∃ 𝑔𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) )
11 4 7 10 syl2anc ( 𝑅 ∈ Ring → ∃ 𝑔𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) )
12 1 5 2 islpidl ( 𝑅 ∈ Ring → ( 𝐵𝑃 ↔ ∃ 𝑔𝐵 𝐵 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑔 } ) ) )
13 11 12 mpbird ( 𝑅 ∈ Ring → 𝐵𝑃 )