Metamath Proof Explorer


Theorem rspsn

Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses rspsn.b
|- B = ( Base ` R )
rspsn.k
|- K = ( RSpan ` R )
rspsn.d
|- .|| = ( ||r ` R )
Assertion rspsn
|- ( ( R e. Ring /\ G e. B ) -> ( K ` { G } ) = { x | G .|| x } )

Proof

Step Hyp Ref Expression
1 rspsn.b
 |-  B = ( Base ` R )
2 rspsn.k
 |-  K = ( RSpan ` R )
3 rspsn.d
 |-  .|| = ( ||r ` R )
4 eqcom
 |-  ( x = ( a ( .r ` R ) G ) <-> ( a ( .r ` R ) G ) = x )
5 4 a1i
 |-  ( ( R e. Ring /\ G e. B ) -> ( x = ( a ( .r ` R ) G ) <-> ( a ( .r ` R ) G ) = x ) )
6 5 rexbidv
 |-  ( ( R e. Ring /\ G e. B ) -> ( E. a e. B x = ( a ( .r ` R ) G ) <-> E. a e. B ( a ( .r ` R ) G ) = x ) )
7 rlmlmod
 |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod )
8 rlmsca2
 |-  ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) )
9 baseid
 |-  Base = Slot ( Base ` ndx )
10 9 1 strfvi
 |-  B = ( Base ` ( _I ` R ) )
11 rlmbas
 |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) )
12 1 11 eqtri
 |-  B = ( Base ` ( ringLMod ` R ) )
13 rlmvsca
 |-  ( .r ` R ) = ( .s ` ( ringLMod ` R ) )
14 rspval
 |-  ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) )
15 2 14 eqtri
 |-  K = ( LSpan ` ( ringLMod ` R ) )
16 8 10 12 13 15 lspsnel
 |-  ( ( ( ringLMod ` R ) e. LMod /\ G e. B ) -> ( x e. ( K ` { G } ) <-> E. a e. B x = ( a ( .r ` R ) G ) ) )
17 7 16 sylan
 |-  ( ( R e. Ring /\ G e. B ) -> ( x e. ( K ` { G } ) <-> E. a e. B x = ( a ( .r ` R ) G ) ) )
18 eqid
 |-  ( .r ` R ) = ( .r ` R )
19 1 3 18 dvdsr2
 |-  ( G e. B -> ( G .|| x <-> E. a e. B ( a ( .r ` R ) G ) = x ) )
20 19 adantl
 |-  ( ( R e. Ring /\ G e. B ) -> ( G .|| x <-> E. a e. B ( a ( .r ` R ) G ) = x ) )
21 6 17 20 3bitr4d
 |-  ( ( R e. Ring /\ G e. B ) -> ( x e. ( K ` { G } ) <-> G .|| x ) )
22 21 abbi2dv
 |-  ( ( R e. Ring /\ G e. B ) -> ( K ` { G } ) = { x | G .|| x } )