Metamath Proof Explorer


Theorem lt2msqi

Description: The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999)

Ref Expression
Hypotheses ltplus1.1
|- A e. RR
prodgt0.2
|- B e. RR
Assertion lt2msqi
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1
 |-  A e. RR
2 prodgt0.2
 |-  B e. RR
3 lt2msq
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) )
4 2 3 mpanr1
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ 0 <_ B ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) )
5 1 4 mpanl1
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( A < B <-> ( A x. A ) < ( B x. B ) ) )