Metamath Proof Explorer


Theorem ltaddposi

Description: Adding a positive number to another number increases it. (Contributed by NM, 25-Aug-1999)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
Assertion ltaddposi
|- ( 0 < A <-> B < ( B + A ) )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 ltaddpos
 |-  ( ( A e. RR /\ B e. RR ) -> ( 0 < A <-> B < ( B + A ) ) )
4 1 2 3 mp2an
 |-  ( 0 < A <-> B < ( B + A ) )