Metamath Proof Explorer


Theorem ltcvrntr

Description: Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012)

Ref Expression
Hypotheses ltltncvr.b
|- B = ( Base ` K )
ltltncvr.s
|- .< = ( lt ` K )
ltltncvr.c
|- C = ( 
Assertion ltcvrntr
|- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y C Z ) -> -. X C Z ) )

Proof

Step Hyp Ref Expression
1 ltltncvr.b
 |-  B = ( Base ` K )
2 ltltncvr.s
 |-  .< = ( lt ` K )
3 ltltncvr.c
 |-  C = ( 
4 1 2 3 cvrlt
 |-  ( ( ( K e. A /\ Y e. B /\ Z e. B ) /\ Y C Z ) -> Y .< Z )
5 4 ex
 |-  ( ( K e. A /\ Y e. B /\ Z e. B ) -> ( Y C Z -> Y .< Z ) )
6 5 3adant3r1
 |-  ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y C Z -> Y .< Z ) )
7 1 2 3 ltltncvr
 |-  ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> -. X C Z ) )
8 6 7 sylan2d
 |-  ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y C Z ) -> -. X C Z ) )