Step |
Hyp |
Ref |
Expression |
1 |
|
ltltncvr.b |
|- B = ( Base ` K ) |
2 |
|
ltltncvr.s |
|- .< = ( lt ` K ) |
3 |
|
ltltncvr.c |
|- C = ( |
4 |
1 2 3
|
cvrlt |
|- ( ( ( K e. A /\ Y e. B /\ Z e. B ) /\ Y C Z ) -> Y .< Z ) |
5 |
4
|
ex |
|- ( ( K e. A /\ Y e. B /\ Z e. B ) -> ( Y C Z -> Y .< Z ) ) |
6 |
5
|
3adant3r1 |
|- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y C Z -> Y .< Z ) ) |
7 |
1 2 3
|
ltltncvr |
|- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y .< Z ) -> -. X C Z ) ) |
8 |
6 7
|
sylan2d |
|- ( ( K e. A /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .< Y /\ Y C Z ) -> -. X C Z ) ) |