Metamath Proof Explorer


Theorem ltsubrp

Description: Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion ltsubrp
|- ( ( A e. RR /\ B e. RR+ ) -> ( A - B ) < A )

Proof

Step Hyp Ref Expression
1 elrp
 |-  ( B e. RR+ <-> ( B e. RR /\ 0 < B ) )
2 ltsubpos
 |-  ( ( B e. RR /\ A e. RR ) -> ( 0 < B <-> ( A - B ) < A ) )
3 2 biimpd
 |-  ( ( B e. RR /\ A e. RR ) -> ( 0 < B -> ( A - B ) < A ) )
4 3 expcom
 |-  ( A e. RR -> ( B e. RR -> ( 0 < B -> ( A - B ) < A ) ) )
5 4 imp32
 |-  ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( A - B ) < A )
6 1 5 sylan2b
 |-  ( ( A e. RR /\ B e. RR+ ) -> ( A - B ) < A )