Metamath Proof Explorer


Theorem lttrid

Description: Ordering on reals satisfies strict trichotomy. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1
|- ( ph -> A e. RR )
ltd.2
|- ( ph -> B e. RR )
Assertion lttrid
|- ( ph -> ( A < B <-> -. ( A = B \/ B < A ) ) )

Proof

Step Hyp Ref Expression
1 ltd.1
 |-  ( ph -> A e. RR )
2 ltd.2
 |-  ( ph -> B e. RR )
3 axlttri
 |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> ( A < B <-> -. ( A = B \/ B < A ) ) )