Description: The second Mersenne number M_2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | m2prm | |- ( ( 2 ^ 2 ) - 1 ) e. Prime |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sq2 | |- ( 2 ^ 2 ) = 4 |
|
2 | 1 | oveq1i | |- ( ( 2 ^ 2 ) - 1 ) = ( 4 - 1 ) |
3 | 4m1e3 | |- ( 4 - 1 ) = 3 |
|
4 | 2 3 | eqtri | |- ( ( 2 ^ 2 ) - 1 ) = 3 |
5 | 3prm | |- 3 e. Prime |
|
6 | 4 5 | eqeltri | |- ( ( 2 ^ 2 ) - 1 ) e. Prime |