Metamath Proof Explorer
Description: The second Mersenne number M_2 = 3 is a prime number. (Contributed by AV, 16-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
m2prm |
⊢ ( ( 2 ↑ 2 ) − 1 ) ∈ ℙ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
2 |
1
|
oveq1i |
⊢ ( ( 2 ↑ 2 ) − 1 ) = ( 4 − 1 ) |
3 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
4 |
2 3
|
eqtri |
⊢ ( ( 2 ↑ 2 ) − 1 ) = 3 |
5 |
|
3prm |
⊢ 3 ∈ ℙ |
6 |
4 5
|
eqeltri |
⊢ ( ( 2 ↑ 2 ) − 1 ) ∈ ℙ |