Metamath Proof Explorer
Description: The third Mersenne number M_3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
m3prm |
⊢ ( ( 2 ↑ 3 ) − 1 ) ∈ ℙ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
2 |
1
|
oveq1i |
⊢ ( ( 2 ↑ 3 ) − 1 ) = ( 8 − 1 ) |
3 |
|
7p1e8 |
⊢ ( 7 + 1 ) = 8 |
4 |
|
8cn |
⊢ 8 ∈ ℂ |
5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
6 |
|
7cn |
⊢ 7 ∈ ℂ |
7 |
4 5 6
|
subadd2i |
⊢ ( ( 8 − 1 ) = 7 ↔ ( 7 + 1 ) = 8 ) |
8 |
3 7
|
mpbir |
⊢ ( 8 − 1 ) = 7 |
9 |
2 8
|
eqtri |
⊢ ( ( 2 ↑ 3 ) − 1 ) = 7 |
10 |
|
7prm |
⊢ 7 ∈ ℙ |
11 |
9 10
|
eqeltri |
⊢ ( ( 2 ↑ 3 ) − 1 ) ∈ ℙ |