Metamath Proof Explorer
		
		
		
		Description:  The third Mersenne number M_3 = 7 is a prime number.  (Contributed by AV, 16-Aug-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | m3prm | ⊢  ( ( 2 ↑ 3 )  −  1 )  ∈  ℙ | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cu2 | ⊢ ( 2 ↑ 3 )  =  8 | 
						
							| 2 | 1 | oveq1i | ⊢ ( ( 2 ↑ 3 )  −  1 )  =  ( 8  −  1 ) | 
						
							| 3 |  | 7p1e8 | ⊢ ( 7  +  1 )  =  8 | 
						
							| 4 |  | 8cn | ⊢ 8  ∈  ℂ | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 |  | 7cn | ⊢ 7  ∈  ℂ | 
						
							| 7 | 4 5 6 | subadd2i | ⊢ ( ( 8  −  1 )  =  7  ↔  ( 7  +  1 )  =  8 ) | 
						
							| 8 | 3 7 | mpbir | ⊢ ( 8  −  1 )  =  7 | 
						
							| 9 | 2 8 | eqtri | ⊢ ( ( 2 ↑ 3 )  −  1 )  =  7 | 
						
							| 10 |  | 7prm | ⊢ 7  ∈  ℙ | 
						
							| 11 | 9 10 | eqeltri | ⊢ ( ( 2 ↑ 3 )  −  1 )  ∈  ℙ |