Metamath Proof Explorer


Theorem m3prm

Description: The third Mersenne number M_3 = 7 is a prime number. (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion m3prm ( ( 2 ↑ 3 ) − 1 ) ∈ ℙ

Proof

Step Hyp Ref Expression
1 cu2 ( 2 ↑ 3 ) = 8
2 1 oveq1i ( ( 2 ↑ 3 ) − 1 ) = ( 8 − 1 )
3 7p1e8 ( 7 + 1 ) = 8
4 8cn 8 ∈ ℂ
5 ax-1cn 1 ∈ ℂ
6 7cn 7 ∈ ℂ
7 4 5 6 subadd2i ( ( 8 − 1 ) = 7 ↔ ( 7 + 1 ) = 8 )
8 3 7 mpbir ( 8 − 1 ) = 7
9 2 8 eqtri ( ( 2 ↑ 3 ) − 1 ) = 7
10 7prm 7 ∈ ℙ
11 9 10 eqeltri ( ( 2 ↑ 3 ) − 1 ) ∈ ℙ