Metamath Proof Explorer
		
		
		
		Description:  The third Mersenne number M_3 = 7 is a prime number.  (Contributed by AV, 16-Aug-2021)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | m3prm |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cu2 |  | 
						
							| 2 | 1 | oveq1i |  | 
						
							| 3 |  | 7p1e8 |  | 
						
							| 4 |  | 8cn |  | 
						
							| 5 |  | ax-1cn |  | 
						
							| 6 |  | 7cn |  | 
						
							| 7 | 4 5 6 | subadd2i |  | 
						
							| 8 | 3 7 | mpbir |  | 
						
							| 9 | 2 8 | eqtri |  | 
						
							| 10 |  | 7prm |  | 
						
							| 11 | 9 10 | eqeltri |  |