Metamath Proof Explorer


Theorem 7prm

Description: 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 7prm 7

Proof

Step Hyp Ref Expression
1 7nn 7
2 1lt7 1<7
3 2nn 2
4 3nn0 30
5 1nn 1
6 3cn 3
7 2cn 2
8 3t2e6 32=6
9 6 7 8 mulcomli 23=6
10 9 oveq1i 23+1=6+1
11 df-7 7=6+1
12 10 11 eqtr4i 23+1=7
13 1lt2 1<2
14 3 4 5 12 13 ndvdsi ¬27
15 3nn 3
16 2nn0 20
17 8 oveq1i 32+1=6+1
18 17 11 eqtr4i 32+1=7
19 1lt3 1<3
20 15 16 5 18 19 ndvdsi ¬37
21 5nn0 50
22 7nn0 70
23 7lt10 7<10
24 3 21 22 23 declti 7<25
25 1 2 14 20 24 prmlem1 7