| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh8a.h |
|- H = ( LHyp ` K ) |
| 2 |
|
mapdh8a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
mapdh8a.v |
|- V = ( Base ` U ) |
| 4 |
|
mapdh8a.s |
|- .- = ( -g ` U ) |
| 5 |
|
mapdh8a.o |
|- .0. = ( 0g ` U ) |
| 6 |
|
mapdh8a.n |
|- N = ( LSpan ` U ) |
| 7 |
|
mapdh8a.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 8 |
|
mapdh8a.d |
|- D = ( Base ` C ) |
| 9 |
|
mapdh8a.r |
|- R = ( -g ` C ) |
| 10 |
|
mapdh8a.q |
|- Q = ( 0g ` C ) |
| 11 |
|
mapdh8a.j |
|- J = ( LSpan ` C ) |
| 12 |
|
mapdh8a.m |
|- M = ( ( mapd ` K ) ` W ) |
| 13 |
|
mapdh8a.i |
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) ) |
| 14 |
|
mapdh8a.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 15 |
|
mapdh8h.f |
|- ( ph -> F e. D ) |
| 16 |
|
mapdh8h.mn |
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) ) |
| 17 |
|
mapdh8i.x |
|- ( ph -> X e. ( V \ { .0. } ) ) |
| 18 |
|
mapdh8i.y |
|- ( ph -> Y e. ( V \ { .0. } ) ) |
| 19 |
|
mapdh8i.z |
|- ( ph -> Z e. ( V \ { .0. } ) ) |
| 20 |
|
mapdh8i.xy |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 21 |
|
mapdh8i.xz |
|- ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) ) |
| 22 |
|
mapdh8i.yt |
|- ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) ) |
| 23 |
|
mapdh8i.zt |
|- ( ph -> ( N ` { Z } ) =/= ( N ` { T } ) ) |
| 24 |
|
mapdh8i.t |
|- ( ph -> T e. ( V \ { .0. } ) ) |
| 25 |
|
mapdh8i.xt |
|- ( ph -> ( N ` { X } ) =/= ( N ` { T } ) ) |
| 26 |
|
eqidd |
|- ( ph -> ( I ` <. X , F , Y >. ) = ( I ` <. X , F , Y >. ) ) |
| 27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 26 17 18 24 20 25 22
|
mapdh8g |
|- ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. X , F , T >. ) ) |
| 28 |
|
eqidd |
|- ( ph -> ( I ` <. X , F , Z >. ) = ( I ` <. X , F , Z >. ) ) |
| 29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 28 17 19 24 21 25 23
|
mapdh8g |
|- ( ph -> ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) = ( I ` <. X , F , T >. ) ) |
| 30 |
27 29
|
eqtr4d |
|- ( ph -> ( I ` <. Y , ( I ` <. X , F , Y >. ) , T >. ) = ( I ` <. Z , ( I ` <. X , F , Z >. ) , T >. ) ) |