Metamath Proof Explorer


Theorem mapdh8g

Description: Part of Part (8) in Baer p. 48. Eliminate X e. ( N{ Y , T } ) . TODO: break out T =/= .0. in mapdh8e so we can share hypotheses. Also, look at hypothesis sharing for earlier mapdh8* and mapdh75* stuff. (Contributed by NM, 10-May-2015)

Ref Expression
Hypotheses mapdh8a.h
|- H = ( LHyp ` K )
mapdh8a.u
|- U = ( ( DVecH ` K ) ` W )
mapdh8a.v
|- V = ( Base ` U )
mapdh8a.s
|- .- = ( -g ` U )
mapdh8a.o
|- .0. = ( 0g ` U )
mapdh8a.n
|- N = ( LSpan ` U )
mapdh8a.c
|- C = ( ( LCDual ` K ) ` W )
mapdh8a.d
|- D = ( Base ` C )
mapdh8a.r
|- R = ( -g ` C )
mapdh8a.q
|- Q = ( 0g ` C )
mapdh8a.j
|- J = ( LSpan ` C )
mapdh8a.m
|- M = ( ( mapd ` K ) ` W )
mapdh8a.i
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
mapdh8a.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdh8e.f
|- ( ph -> F e. D )
mapdh8e.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
mapdh8e.eg
|- ( ph -> ( I ` <. X , F , Y >. ) = G )
mapdh8e.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdh8e.y
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdh8e.t
|- ( ph -> T e. ( V \ { .0. } ) )
mapdh8e.xy
|- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
mapdh8e.xt
|- ( ph -> ( N ` { X } ) =/= ( N ` { T } ) )
mapdh8e.yt
|- ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) )
Assertion mapdh8g
|- ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h
 |-  H = ( LHyp ` K )
2 mapdh8a.u
 |-  U = ( ( DVecH ` K ) ` W )
3 mapdh8a.v
 |-  V = ( Base ` U )
4 mapdh8a.s
 |-  .- = ( -g ` U )
5 mapdh8a.o
 |-  .0. = ( 0g ` U )
6 mapdh8a.n
 |-  N = ( LSpan ` U )
7 mapdh8a.c
 |-  C = ( ( LCDual ` K ) ` W )
8 mapdh8a.d
 |-  D = ( Base ` C )
9 mapdh8a.r
 |-  R = ( -g ` C )
10 mapdh8a.q
 |-  Q = ( 0g ` C )
11 mapdh8a.j
 |-  J = ( LSpan ` C )
12 mapdh8a.m
 |-  M = ( ( mapd ` K ) ` W )
13 mapdh8a.i
 |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
14 mapdh8a.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 mapdh8e.f
 |-  ( ph -> F e. D )
16 mapdh8e.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
17 mapdh8e.eg
 |-  ( ph -> ( I ` <. X , F , Y >. ) = G )
18 mapdh8e.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
19 mapdh8e.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
20 mapdh8e.t
 |-  ( ph -> T e. ( V \ { .0. } ) )
21 mapdh8e.xy
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
22 mapdh8e.xt
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { T } ) )
23 mapdh8e.yt
 |-  ( ph -> ( N ` { Y } ) =/= ( N ` { T } ) )
24 14 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( K e. HL /\ W e. H ) )
25 15 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> F e. D )
26 16 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
27 17 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. X , F , Y >. ) = G )
28 18 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> X e. ( V \ { .0. } ) )
29 19 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> Y e. ( V \ { .0. } ) )
30 20 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> T e. ( V \ { .0. } ) )
31 21 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) )
32 22 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { X } ) =/= ( N ` { T } ) )
33 23 adantr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { T } ) )
34 simpr
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> X e. ( N ` { Y , T } ) )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 24 25 26 27 28 29 30 31 32 33 34 mapdh8e
 |-  ( ( ph /\ X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) )
36 14 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( K e. HL /\ W e. H ) )
37 15 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> F e. D )
38 16 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
39 17 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( I ` <. X , F , Y >. ) = G )
40 18 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> X e. ( V \ { .0. } ) )
41 19 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> Y e. ( V \ { .0. } ) )
42 23 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( N ` { Y } ) =/= ( N ` { T } ) )
43 20 adantr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> T e. ( V \ { .0. } ) )
44 simpr
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> -. X e. ( N ` { Y , T } ) )
45 1 2 3 4 5 6 7 8 9 10 11 12 13 36 37 38 39 40 41 42 43 44 mapdh8a
 |-  ( ( ph /\ -. X e. ( N ` { Y , T } ) ) -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) )
46 35 45 pm2.61dan
 |-  ( ph -> ( I ` <. Y , G , T >. ) = ( I ` <. X , F , T >. ) )