Metamath Proof Explorer


Theorem mapdh8g

Description: Part of Part (8) in Baer p. 48. Eliminate X e. ( N{ Y , T } ) . TODO: break out T =/= .0. in mapdh8e so we can share hypotheses. Also, look at hypothesis sharing for earlier mapdh8* and mapdh75* stuff. (Contributed by NM, 10-May-2015)

Ref Expression
Hypotheses mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
mapdh8a.s = ( -g𝑈 )
mapdh8a.o 0 = ( 0g𝑈 )
mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
mapdh8a.r 𝑅 = ( -g𝐶 )
mapdh8a.q 𝑄 = ( 0g𝐶 )
mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh8e.f ( 𝜑𝐹𝐷 )
mapdh8e.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh8e.eg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
mapdh8e.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8e.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8e.t ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8e.xy ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
mapdh8e.xt ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8e.yt ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
Assertion mapdh8g ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh8a.s = ( -g𝑈 )
5 mapdh8a.o 0 = ( 0g𝑈 )
6 mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh8a.r 𝑅 = ( -g𝐶 )
10 mapdh8a.q 𝑄 = ( 0g𝐶 )
11 mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh8e.f ( 𝜑𝐹𝐷 )
16 mapdh8e.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh8e.eg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
18 mapdh8e.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 mapdh8e.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
20 mapdh8e.t ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
21 mapdh8e.xy ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
22 mapdh8e.xt ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
23 mapdh8e.yt ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
24 14 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
25 15 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐹𝐷 )
26 16 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
27 17 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
28 18 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
29 19 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
30 20 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
31 21 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
32 22 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
33 23 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
34 simpr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 24 25 26 27 28 29 30 31 32 33 34 mapdh8e ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )
36 14 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
37 15 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐹𝐷 )
38 16 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
39 17 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
40 18 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
41 19 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
42 23 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
43 20 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
44 simpr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) )
45 1 2 3 4 5 6 7 8 9 10 11 12 13 36 37 38 39 40 41 42 43 44 mapdh8a ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )
46 35 45 pm2.61dan ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )