| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mapdh8a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
mapdh8a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
mapdh8a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
mapdh8a.s |
⊢ − = ( -g ‘ 𝑈 ) |
| 5 |
|
mapdh8a.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
| 6 |
|
mapdh8a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 7 |
|
mapdh8a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
mapdh8a.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
| 9 |
|
mapdh8a.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
| 10 |
|
mapdh8a.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
| 11 |
|
mapdh8a.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
| 12 |
|
mapdh8a.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
|
mapdh8a.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
| 14 |
|
mapdh8a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 15 |
|
mapdh8e.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 16 |
|
mapdh8e.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 17 |
|
mapdh8e.eg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
| 18 |
|
mapdh8e.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 19 |
|
mapdh8e.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 20 |
|
mapdh8e.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 21 |
|
mapdh8e.xy |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 22 |
|
mapdh8e.xt |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
| 23 |
|
mapdh8e.yt |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
| 24 |
|
mapdh8e.e |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) |
| 25 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 26 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 27 |
1 2 3 6 14 25 26
|
dvh3dim |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑉 ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 28 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 29 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝐹 ∈ 𝐷 ) |
| 30 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
| 31 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
| 32 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 33 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 34 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 35 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
| 36 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
| 37 |
1 2 14
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 38 |
37
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑈 ∈ LMod ) |
| 39 |
3 36 6 37 25 26
|
lspprcl |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 40 |
39
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 41 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑤 ∈ 𝑉 ) |
| 42 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 43 |
5 36 38 40 41 42
|
lssneln0 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
| 44 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
| 45 |
20
|
eldifad |
⊢ ( 𝜑 → 𝑇 ∈ 𝑉 ) |
| 46 |
|
prcom |
⊢ { 𝑌 , 𝑇 } = { 𝑇 , 𝑌 } |
| 47 |
46
|
fveq2i |
⊢ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) = ( 𝑁 ‘ { 𝑇 , 𝑌 } ) |
| 48 |
24 47
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑇 , 𝑌 } ) ) |
| 49 |
3 5 6 44 18 45 26 21 48
|
lspexch |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 50 |
36 6 37 39 49
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 51 |
50
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 52 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → 𝑈 ∈ LMod ) |
| 53 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) ) |
| 54 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → 𝑤 ∈ 𝑉 ) |
| 55 |
3 36 6 52 53 54
|
ellspsn5b |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → ( 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ↔ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 56 |
55
|
biimprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → ( ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 57 |
56
|
con3d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ) → ( ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ¬ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) ) |
| 58 |
57
|
3impia |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) |
| 59 |
|
nssne2 |
⊢ ( ( ( 𝑁 ‘ { 𝑇 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∧ ¬ ( 𝑁 ‘ { 𝑤 } ) ⊆ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
| 60 |
51 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑇 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
| 61 |
60
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
| 62 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
| 63 |
44
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑈 ∈ LVec ) |
| 64 |
25
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑋 ∈ 𝑉 ) |
| 65 |
26
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑌 ∈ 𝑉 ) |
| 66 |
3 6 63 41 64 65 42
|
lspindpi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑋 } ) ∧ ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 67 |
66
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 68 |
67
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
| 69 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
| 70 |
3 5 6 63 32 65 41 69 42
|
lspindp2l |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) ) |
| 71 |
70
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
| 72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 28 29 30 31 32 33 34 35 43 61 62 68 71
|
mapdh8d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |
| 73 |
72
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝑉 ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) ) |
| 74 |
27 73
|
mpd |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |