| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mapdh8a.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | mapdh8a.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | mapdh8a.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | mapdh8a.s | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 5 |  | mapdh8a.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 6 |  | mapdh8a.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 7 |  | mapdh8a.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | mapdh8a.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 9 |  | mapdh8a.r | ⊢ 𝑅  =  ( -g ‘ 𝐶 ) | 
						
							| 10 |  | mapdh8a.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 11 |  | mapdh8a.j | ⊢ 𝐽  =  ( LSpan ‘ 𝐶 ) | 
						
							| 12 |  | mapdh8a.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 13 |  | mapdh8a.i | ⊢ 𝐼  =  ( 𝑥  ∈  V  ↦  if ( ( 2nd  ‘ 𝑥 )  =   0  ,  𝑄 ,  ( ℩ ℎ  ∈  𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd  ‘ 𝑥 ) } ) )  =  ( 𝐽 ‘ { ℎ } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st  ‘ ( 1st  ‘ 𝑥 ) )  −  ( 2nd  ‘ 𝑥 ) ) } ) )  =  ( 𝐽 ‘ { ( ( 2nd  ‘ ( 1st  ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) | 
						
							| 14 |  | mapdh8a.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 15 |  | mapdh8d.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 16 |  | mapdh8d.mn | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐹 } ) ) | 
						
							| 17 |  | mapdh8b.eg | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺 ) | 
						
							| 18 |  | mapdh8d.x | ⊢ ( 𝜑  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | mapdh8d.y | ⊢ ( 𝜑  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 20 |  | mapdh8d.xt | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 21 |  | mapdh8d.yz | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 22 |  | mapdh8d.w | ⊢ ( 𝜑  →  𝑤  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 23 |  | mapdh8d.wt | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 24 |  | mapdh8d.ut | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 25 |  | mapdh8d.vw | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑤 } ) ) | 
						
							| 26 |  | mapdh8d.xn | ⊢ ( 𝜑  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑤 } ) ) | 
						
							| 27 | 14 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 28 | 19 | eldifad | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 29 | 1 2 14 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 30 | 18 | eldifad | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 31 | 22 | eldifad | ⊢ ( 𝜑  →  𝑤  ∈  𝑉 ) | 
						
							| 32 | 3 6 29 30 28 31 26 | lspindpi | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } )  ∧  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑤 } ) ) ) | 
						
							| 33 | 32 | simpld | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑌 } ) ) | 
						
							| 34 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 28 33 | mapdhcl | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  ∈  𝐷 ) | 
						
							| 35 | 17 34 | eqeltrrd | ⊢ ( 𝜑  →  𝐺  ∈  𝐷 ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝐺  ∈  𝐷 ) | 
						
							| 37 | 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 35 33 | mapdheq | ⊢ ( 𝜑  →  ( ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺  ↔  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) | 
						
							| 38 | 17 37 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐺 } )  ∧  ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋  −  𝑌 ) } ) )  =  ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) | 
						
							| 39 | 38 | simpld | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) )  =  ( 𝐽 ‘ { 𝐺 } ) ) | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 22 26 | mapdh8a | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑤 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑤 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 43 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 44 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑤  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 45 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑁 ‘ { 𝑤 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 46 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑇  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 47 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑤 } ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) ) | 
						
							| 49 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑤 } ) ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 13 27 36 40 42 43 44 45 46 47 48 49 | mapdh8b | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐼 ‘ 〈 𝑤 ,  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ,  𝑇 〉 )  =  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑇 〉 ) ) | 
						
							| 51 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝐹  ∈  𝐷 ) | 
						
							| 52 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐹 } ) ) | 
						
							| 53 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ) | 
						
							| 54 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 55 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 56 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑁 ‘ { 𝑋 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 57 | 1 2 3 4 5 6 7 8 9 10 11 12 13 27 51 52 53 54 43 46 55 44 45 56 47 48 49 | mapdh8c | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐼 ‘ 〈 𝑤 ,  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑤 〉 ) ,  𝑇 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑇 〉 ) ) | 
						
							| 58 | 50 57 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑇 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑇 〉 ) ) | 
						
							| 59 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 60 | 15 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝐹  ∈  𝐷 ) | 
						
							| 61 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) )  =  ( 𝐽 ‘ { 𝐹 } ) ) | 
						
							| 62 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑌 〉 )  =  𝐺 ) | 
						
							| 63 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 64 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑌  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 65 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝑁 ‘ { 𝑌 } )  ≠  ( 𝑁 ‘ { 𝑇 } ) ) | 
						
							| 66 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  𝑇  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 67 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) ) | 
						
							| 68 | 1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 63 64 65 66 67 | mapdh8a | ⊢ ( ( 𝜑  ∧  ¬  𝑋  ∈  ( 𝑁 ‘ { 𝑌 ,  𝑇 } ) )  →  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑇 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑇 〉 ) ) | 
						
							| 69 | 58 68 | pm2.61dan | ⊢ ( 𝜑  →  ( 𝐼 ‘ 〈 𝑌 ,  𝐺 ,  𝑇 〉 )  =  ( 𝐼 ‘ 〈 𝑋 ,  𝐹 ,  𝑇 〉 ) ) |