Step |
Hyp |
Ref |
Expression |
1 |
|
mapdh8a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
mapdh8a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
mapdh8a.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
mapdh8a.s |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
mapdh8a.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
6 |
|
mapdh8a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
7 |
|
mapdh8a.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
mapdh8a.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
9 |
|
mapdh8a.r |
⊢ 𝑅 = ( -g ‘ 𝐶 ) |
10 |
|
mapdh8a.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
11 |
|
mapdh8a.j |
⊢ 𝐽 = ( LSpan ‘ 𝐶 ) |
12 |
|
mapdh8a.m |
⊢ 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
mapdh8a.i |
⊢ 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd ‘ 𝑥 ) = 0 , 𝑄 , ( ℩ ℎ ∈ 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd ‘ 𝑥 ) } ) ) = ( 𝐽 ‘ { ℎ } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st ‘ 𝑥 ) ) − ( 2nd ‘ 𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st ‘ 𝑥 ) ) 𝑅 ℎ ) } ) ) ) ) ) |
14 |
|
mapdh8a.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
15 |
|
mapdh8d.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
16 |
|
mapdh8d.mn |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
17 |
|
mapdh8b.eg |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
18 |
|
mapdh8d.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
|
mapdh8d.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
20 |
|
mapdh8d.xt |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
21 |
|
mapdh8d.yz |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
22 |
|
mapdh8d.w |
⊢ ( 𝜑 → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
23 |
|
mapdh8d.wt |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
24 |
|
mapdh8d.ut |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
25 |
|
mapdh8d.vw |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
26 |
|
mapdh8d.xn |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
27 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
28 |
19
|
eldifad |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
29 |
1 2 14
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
30 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
31 |
22
|
eldifad |
⊢ ( 𝜑 → 𝑤 ∈ 𝑉 ) |
32 |
3 6 29 30 28 31 26
|
lspindpi |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) ) |
33 |
32
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) |
34 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 28 33
|
mapdhcl |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) ∈ 𝐷 ) |
35 |
17 34
|
eqeltrrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝐷 ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐺 ∈ 𝐷 ) |
37 |
10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 35 33
|
mapdheq |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) ) |
38 |
17 37
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 − 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) |
39 |
38
|
simpld |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ) |
41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 22 26
|
mapdh8a |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑤 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑤 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
43 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
44 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) ) |
45 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
46 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
47 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) |
49 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) ) |
50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 27 36 40 42 43 44 45 46 47 48 49
|
mapdh8b |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) ) |
51 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐹 ∈ 𝐷 ) |
52 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
53 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) ) |
54 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
55 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
56 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 27 51 52 53 54 43 46 55 44 45 56 47 48 49
|
mapdh8c |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑤 , ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑤 〉 ) , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |
58 |
50 57
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |
59 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
60 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐹 ∈ 𝐷 ) |
61 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) ) |
62 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑌 〉 ) = 𝐺 ) |
63 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ) |
64 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) ) |
65 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) ) |
66 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) ) |
67 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) |
68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 63 64 65 66 67
|
mapdh8a |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |
69 |
58 68
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐼 ‘ 〈 𝑌 , 𝐺 , 𝑇 〉 ) = ( 𝐼 ‘ 〈 𝑋 , 𝐹 , 𝑇 〉 ) ) |