Metamath Proof Explorer


Theorem mapdh8d

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 6-May-2015)

Ref Expression
Hypotheses mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
mapdh8a.s = ( -g𝑈 )
mapdh8a.o 0 = ( 0g𝑈 )
mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
mapdh8a.r 𝑅 = ( -g𝐶 )
mapdh8a.q 𝑄 = ( 0g𝐶 )
mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdh8d.f ( 𝜑𝐹𝐷 )
mapdh8d.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdh8b.eg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
mapdh8d.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8d.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8d.xt ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8d.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8d.w ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh8d.wt ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8d.ut ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
mapdh8d.vw ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
mapdh8d.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) )
Assertion mapdh8d ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )

Proof

Step Hyp Ref Expression
1 mapdh8a.h 𝐻 = ( LHyp ‘ 𝐾 )
2 mapdh8a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 mapdh8a.v 𝑉 = ( Base ‘ 𝑈 )
4 mapdh8a.s = ( -g𝑈 )
5 mapdh8a.o 0 = ( 0g𝑈 )
6 mapdh8a.n 𝑁 = ( LSpan ‘ 𝑈 )
7 mapdh8a.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 mapdh8a.d 𝐷 = ( Base ‘ 𝐶 )
9 mapdh8a.r 𝑅 = ( -g𝐶 )
10 mapdh8a.q 𝑄 = ( 0g𝐶 )
11 mapdh8a.j 𝐽 = ( LSpan ‘ 𝐶 )
12 mapdh8a.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
13 mapdh8a.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
14 mapdh8a.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdh8d.f ( 𝜑𝐹𝐷 )
16 mapdh8d.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdh8b.eg ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
18 mapdh8d.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
19 mapdh8d.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
20 mapdh8d.xt ( 𝜑𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
21 mapdh8d.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
22 mapdh8d.w ( 𝜑𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
23 mapdh8d.wt ( 𝜑 → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
24 mapdh8d.ut ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
25 mapdh8d.vw ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
26 mapdh8d.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) )
27 14 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
28 19 eldifad ( 𝜑𝑌𝑉 )
29 1 2 14 dvhlvec ( 𝜑𝑈 ∈ LVec )
30 18 eldifad ( 𝜑𝑋𝑉 )
31 22 eldifad ( 𝜑𝑤𝑉 )
32 3 6 29 30 28 31 26 lspindpi ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ∧ ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) ) )
33 32 simpld ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) )
34 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 28 33 mapdhcl ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ∈ 𝐷 )
35 17 34 eqeltrrd ( 𝜑𝐺𝐷 )
36 35 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐺𝐷 )
37 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 35 33 mapdheq ( 𝜑 → ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 ↔ ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) ) )
38 17 37 mpbid ( 𝜑 → ( ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( 𝑋 𝑌 ) } ) ) = ( 𝐽 ‘ { ( 𝐹 𝑅 𝐺 ) } ) ) )
39 38 simpld ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
40 39 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝐽 ‘ { 𝐺 } ) )
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 25 22 26 mapdh8a ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑤 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) )
42 41 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑤 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) )
43 19 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
44 22 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
45 23 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑤 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
46 20 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
47 25 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑤 } ) )
48 simpr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) )
49 26 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑤 } ) )
50 1 2 3 4 5 6 7 8 9 10 11 12 13 27 36 40 42 43 44 45 46 47 48 49 mapdh8b ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) )
51 15 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐹𝐷 )
52 16 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
53 eqidd ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) )
54 18 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
55 21 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
56 24 adantr ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
57 1 2 3 4 5 6 7 8 9 10 11 12 13 27 51 52 53 54 43 46 55 44 45 56 47 48 49 mapdh8c ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑤 , ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑤 ⟩ ) , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )
58 50 57 eqtr3d ( ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )
59 14 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
60 15 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝐹𝐷 )
61 16 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
62 17 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) = 𝐺 )
63 18 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
64 19 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
65 21 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝑁 ‘ { 𝑌 } ) ≠ ( 𝑁 ‘ { 𝑇 } ) )
66 20 adantr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → 𝑇 ∈ ( 𝑉 ∖ { 0 } ) )
67 simpr ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) )
68 1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 63 64 65 66 67 mapdh8a ( ( 𝜑 ∧ ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑇 } ) ) → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )
69 58 68 pm2.61dan ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑌 , 𝐺 , 𝑇 ⟩ ) = ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑇 ⟩ ) )